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This paper illustrates the application of artificial neural network (ANN) for prediction of performances
in competitive adsorption of phenol and resorcinol from aqueous solution by conventional and low cost
carbonaceous adsorbent materials, such as activated carbon (AC), wood charcoal (WC) and rice husk
ash (RHA). The three layer’s feed forward neural network with back propagation algorithm in MATLAB
environment was used for estimation of removal efficiencies of phenol and resorcinol in bi-solute water
environment based on 29 sets of laboratory batch study results. The input parameters used for train-
ing of the neural network include amount of adsorbent (g/L), initial concentrations of phenol (mg/L)
henol
esorcinol
ompetitive adsorption
eed forward neural network

and resorcinol (mg/L), contact time (h), and pH. The removal efficiencies of phenol and resorcinol were
considered as an output of the neural network. The performances of the developed ANN models were
also measured using statistical parameters, such as mean error, mean square error, root mean square
error, and linear regression. The comparison of the removal efficiencies of pollutants using ANN model
and experimental results showed that ANN modeling in competitive adsorption of phenolic compounds

with
reasonably corroborated

. Introduction

Phenols and its derivatives as Phenolic compounds are included
n EPA’s priority water pollutants list. These compounds are present
n effluents of the petroleum refining, coke oven batteries, coal gasi-
cation plant, ply board manufacturing industries, etc. The average
henol concentration in some of the industrial wastewater is given

n Table 1 [1].
Phenolic compounds are very harmful to organisms even at

ery low concentration due to its toxicity, foul odour and carcino-
enic properties [2]. The health effects following repeated exposure
o low levels of phenol in water include liver damage, diarrhoea,

outh ulcers, dark urine and hemolytic anemia [3]. Ministry of
nvironment and Forest (MOEF), Govt. of India, New Delhi and
nited States Environmental Protection Agency (US EPA) has listed
henol and phenolic compounds under priority pollutants list. As
er the Bureau of Indian Standards, New Delhi, India, the allow-

ble limit of phenol in drinking water is 1 mg/L while MOEF (Govt.
f India) has set a maximum concentration level of 1 mg/L of phe-
ol in the industrial effluents for safe discharge into inland surface
ater and 5 mg/L for safe discharge into public sewers and marine

∗ Corresponding author. Fax: +91 33 244 17608.
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the experimental results.
© 2011 Elsevier B.V. All rights reserved.

coastal areas. The world health organization (WHO) recommended
0.001 mg/L as the permissible phenolic concentration in potable
water. It is therefore necessary to reduce or to eliminate phenols
from water and wastewater before discharge or reuse.

Various treatment methods are available for removal of phe-
nolic compounds which include adsorption, ion exchange, reverse
osmosis, chemical oxidation, precipitation, distillation, gas strip-
ping, solvent extraction, complexation and even bioremediation
[4]. However, adsorption process is considered to be the cost effec-
tive method for treating phenol containing water and wastewater
potentially of low concentration level. The activated carbon (AC) is
widely used for removal of a variety of organics from water, but the
disadvantage associated with it is the higher regeneration cost and
generation of carbon fines due to the brittle nature of carbon [5].
The challenge is now to find an alternative adsorbent of comparable
efficiency with lower cost. The use of agricultural byproducts and
lignocellulosic residue as adsorbents has been extensively studied
[2–6]. The feasibility of using such materials as adsorbents without
subjecting them to complex and expensive pretreatment makes
them as one of the interesting alternative to the use of AC. Such

materials do not need regeneration because of their availability at
much cheaper cost.

There may be rarely a situation in which only a single solute
would be adsorbed in a treatment process. Raw water supplies
contain a variety of organic compounds that would be adsorbed

dx.doi.org/10.1016/j.jhazmat.2011.01.067
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
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Table 1
Industrial sources and concentrations of phenol.

Industry Concentration (mg/L)

Coking plant
Weak ammonia liquor without dephenolization 58,010
Weak ammonia liquor after dephenolization 4–332
Wash oil still wastes 30–150

Oil refineries
Sour water 80–185
General wastewater 10–100
APF separator effluent 0.3–6.8

Petrochemical
Benzene refinery 210
Tar distillation 300
Nitrogen works 250
Orean manufacturing 100–150
Plastic factory 600–2000
Phenolic resin production 1600
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Fiberboard factory 150
Fiberglass manufacturing 40–400
Aircraft maintenance 200–400

t different rates and at different sites on adsorbents like commer-
ial AC. This is usually considered to be a competitive situation. The
omponents of a mixture of adsorbate in bi-solute or multi-solute
ondition may mutually enhance adsorption which acts relatively
ndependently or inhibitically interfere with one another. Mutual
eduction of both adsorption capacities and adsorption rates can
e expected if the affinities of the adsorbate do not differ by
rder of magnitude and if there are no specific interactions among
hem which can enhance adsorption. This is because the adsorp-
ion of more than one substance generally reduces the number
f surface sites preferentially available. For diffusion, controlled
ates of adsorption by porous adsorbents, very slowly diffusion
pecies in mixed adsorbate systems can depress rates of uptake
f those which diffuse more rapidly. Thus, the degree of mutual
nhibition of competing adsorbate is related to the relative sizes of

olecules being adsorbed, relative adsorptive affinities and rela-
ive concentrations of the solutes and also depending on adsorption

echanism.
The adsorption capacity will be less with a single compound.

eber and Morris [7] cited difference between the break-through
urves for adsorption of a solute from its pure solution and
rom a mixture of solutes in column of AC. It was evident that
he presence of other solutes in the mixture adversely affects
he adsorption of the first leading to much rapid breakthrough
f this material. Jain and Snoeyink [8] investigated competitive
dsorption on commercial AC from aqueous bi-solute solutions
f p-nitrophenol, p-bromophenol and sodium benzenesulfonate
sing batch studies. They reported that a modified model of
riginal Langmuir equation can reasonably be predicted for com-
etitive adsorption. Srivastava and Tyagi [9] studied competitive
dsorption of 4-nitrophenol, 2,4,6-trinitrophenol, 4-chlorophenol
nd 1,3-dihydroxy-benzene on AC obtained from fertilizer waste
lurry in single and bi-solute system using Langmuir model and
ain and Snoeyink modified model. Khan et al. [10] investi-
ated adsorption isotherms for five organic phenolic compounds
n AC for single and bi-solute systems. They stated that for
ulti-component system, the adsorption of a solute in presence

f other solutes is controlled by molecule size, solubility and
olarity. Mihalache et al. [11] presented competitive adsorption
n AC of three aqueous bi-solute system (phenol/p-nitrophenol,
henol/p-chlorophenol, p-nitrophenol/p-chlorophenol) and tri-

olute system (phenol/p-nitrophenol/p-chlorophenol). Lee et al.
12] investigated competitive adsorption for phenol and 4-
itrophenol in binary system using commercial AC. They reported
hat the stronger-adsorbing species (4-nitrophenol) were more
apidly adsorbed than the weaker-adsorbing species (phenol).
us Materials 188 (2011) 67–77

Singh and Yenkie [13] carried out competitive adsorption of phe-
nol, o-cresol, p-nitrophenol, m-methoxyphenol, benzoic acid and
salicylic acid from their aqueous solution onto granular AC col-
umn as single, bi and tri-solute systems. They reported that in
multi-solute system; initially all the adsorbates were taken up by
the GAC surface, but near breakthrough point, more absorbable
solute was able to desorb the less adsorble one. The initial break-
through in multi-solute adsorption in an adsorbent column occurs
earlier as compared to their breakthrough times from single solute
adsorption system. Also, the total amount of solute adsorbed from
solution was greater in multi-component system than in single
solute system. Alam et al. [14] used waste tyre rubber granules
for competitive adsorption of phenol and 2,4-D using batch study
for single and bi-solute aqueous systems. They found that Fre-
undlich model fitted well with the experimental data and predicted
amount of adsorbed well in bi-solute system. Wei and Nakato [15]
conducted competitive adsorption of phenol, 2-chlorophenol and
2,4-dichlorophenol in binary and tertiary solute systems on organi-
cally modified hexaniobate K4Nb6O17. They reported that uptake of
each solute was reduced by the presence of other solutes and reduc-
tion in multi-solute systems depended on the hydrophobicity of the
adsorbates co-existed in the solution. For the adsorbent modified
with 2C182MeN, uptake of the solutes ere enhanced by the pres-
ence of each other at low equilibrium concentrations in comparison
with single solute solutions because of competitive adsorption. The
prediction of the competitive adsorption behavior of phenols with
Freundlich-based Sheindorf–Rebuhn–Sheintuch (SRS) model gave
good results.

ANN is one of data based non-traditional tools for modeling the
adsorption process. ANN modeling has been successfully used for
adsorption process in the past decade. Sundaram [16] developed a
three layer ANN model using modified version of back-propagation
algorithm for pressure swing adsorption (PSA) processes i.e., four-
step PSA cycle for H2–CO separation, six-step PSA cycle for H2
production from natural gas and four-step PSA/Vacuum swing
adsorption (VSA) cycle for the production of N2 from air. Singh et al.
[17] predicted the adsorption capacity of cadmium (Cd) by hematite
using the adapted neural fuzzy model. Initial concentrations of Cd,
agitation rate, temperature, pH and particle size of the hematite
were used as input parameters for the training of the model. The
value of coefficient of correlation (R2) between experimental and
predicted values was worked out as 0.9607. Dabhade et al. [18]
studied the effect of flow rate, influent concentration and solids
loading for phenol degradation in spouted bed contactor and mod-
eling was carried out using ANN. The performance of ANN model
was measured using mean square error (MSE) as 9.318e−12. Their
results showed that ANN model prediction is better than multiple
regression model. Yetilmezsoy and Demirel [19] developed a three
layer ANN for prediction of Pb (II) removal efficiency from aqueous
solution using Antep pistachio (Pistacia Vera L.) as an adsorbent.
They used Levenberg–Marquardt algorithm (LMA) for training of
ANN model in MATLAB environment. The performance of the for-
mulated ANN model was measured using MSE of 2.27875 × 10−4

and correlation coefficient of 0.936. Kumar et al. [20] constructed
and tested a three layer feed-forward neural network to analyze
the kinetic dye uptake of batch adsorption study using AC. The
input to ANN model was contact time, initial dye concentration,
agitation speed, temperature, initial solution pH and AC mass. The
reported value of correlation coefficient of formulated model was
0.98. Kumar and Porkodi [21] formulated a three-layer feed for-
ward neural network to analyze the second order kinetics of dye

i.e., auramine O sorption onto AC under different experimental con-
ditions. The values of parameters used in experiments include the
following:

Experiment 1: C0 = 200 mg/L, agitation speed: 800 rpm, mass of
AC: 1 g, volume of solution: 1.5 L, initial pH: 8, temperature: 305 K.
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Table 2
Characteristics of adsorbents.

Parameter AC RHA WC

Surface area, m2/g (BET) 950–1050 480–600 200–260
Bulk density, kg/m3 750.82 350.36 220
Moisture, % 1–2 5.13 8.00
Ash, % 0.5–8.0 29.5 33.0
Chemical composition

SiO2, % 8.00 6.35 0.47
Al2O3, % ND 0.41 0.06
R.M. Aghav et al. / Journal of Ha

Experiment 2: C0 = 200 mg/L, agitation speed: 800 rpm, mass of
C: 2 g, volume of solution: 1.5 L, initial pH: 8, temperature: 305 K.

The values of coefficient of determination (R2) between exper-
mental data and predicted kinetics (q) using ANN were O.99
or the two experiment and the values of MSE were 183.49 and
.233, respectively. Khataee and Khani [22] carried out modeling
f nitrate adsorption on GAC using ANN tool box of MATLAB 6.5
oftware. They found that ANN based model is a good and pre-
ise method to predict the extent of adsorption of nitrate on GAC
nder different conditions. An important feature of ANN is the
bility to approximate arbitrarily complex relationship without
etailed knowledge of the underlying process [23]. The objective
f ANN model is to compute the output values from input val-
es by some internal manipulated calculations. These models have
hree layers, such as input, hidden and output layers. Each of these
ayers contains nodes, and these nodes are connected to nodes at
djacent layer(s). The hidden layer(s) contain two processes i.e.,
eighted summation functions and transformation function. Both

hese functions rationalized values from input data to the out-
ut measures. The weighted summation function is typically used

n a feed-forward/back propagation neural network model. The
emoval efficiency of the adsorbent is to be considered as an output
ayer of the ANN model.

The pollutant removal efficiency is one of the important param-
ters in case of wastewater treatment using adsorption. The
ollutant removal efficiency depends on various factors, such as
dsorbent dose, adsorbent characteristics, initial concentration of
dsorbate, solution pH, contact time, and agitation speed. The accu-
acy in prediction of pollutant removal efficiency will be beneficial
or better process control of wastewater treatment system.

The investigative work on the competitive adsorption of pheno-
ic compounds using low cost carbonaceous adsorbents is not very

uch exhaustive as per the literature survey. Also, limited work has
een carried out on ANN modeling of the competitive adsorption
rocess. The objective of the present work was to develop an ANN
odel of competitive adsorption to predict the removal efficien-

ies of phenol and resorcinol from water environment as bi-solute
onditions using AC, wood charcoal (WC), and RHA.

. Materials and methods

.1. Materials

All chemicals and reagents used were of analytical grade sup-
lied by E-Merck India. All experiments were conducted using
ouble distilled water. Stock solutions were prepared in accordance
ith the “Standard Methods” [24] using double distilled water.

resh stock solutions were made after every 10 days. To prepare the
tock solution, first 1 g of phenol/resorcinol was diluted to 1000 mL
f boiled and cooled distilled water. The strength of the solution was
000 mg/L. Samples for required predetermined strength were pre-
ared by adding required volume of stock solution to the distilled
ater for necessary dilution.

GAC carbon (E-Merck, India make) was procured and pulver-
zed to different sizes (425–600 �m). The materials with varying
izes were kept in a desiccator at room temperature until it was
sed. The geometric mean sizes of materials used in all the studies
anged from 425 �m to 600 �m. WC was procured from the local
arket and pulverized into different sizes (425–600 �m). WC was
retreated with hot distilled water using 1 N HNO3 solution. After
eing soaked for 24 h, WC was separated from the solution and
hereafter thoroughly washed several times using distilled water.
hen, it was dried in a hot air oven at 105–110 ◦C for 24 h and stored
n desiccators at room temperature before using it.
CaO, % ND 0.41 1.54
Fe2O3, % ND 0.20 0.07
MgO, % ND 0.45 0.08

ND: not detectable.

Rice is one of the major crops grown throughout the world and
upon its separation from the paddy; one-third of its mass remains
agricultural waste materials. The husk is generated in the milling
process while the grain is separated from the outer covering (husk).
The bulk quantity of RHA was obtained by burning in uncontrolled
conditions in a muffle furnace at 700 ± 25 ◦C. RHA was then pre-
treated with hot distilled water followed by washing with 1 N
HNO3 solution. After being soaked for 24 h, RHA was separated
from the above solutions and thereafter thoroughly washed several
times using distilled water. Then, it was dried in a hot air oven at
105–110 ◦C for 24 h and stored in a desiccator at room temperature.
The physico-chemical characteristics of these three test adsorbents
are presented in Table 2.

2.2. Methodology

2.2.1. Experimental methodology
All the experiments were conducted at room temperature. The

test samples were agitated in reciprocating type horizontal shaker
(Remi, India) at a speed of 140 rpm. The pH, adsorbent dose and ini-
tial phenol/resorcinol concentration were studied for their effects
on removal of phenol and resorcinol. A set of IS Sieves was used
for sieving purpose. pH measurement was carried out using a pH
meter (Electronics, Model 101E) in all the experiments. Chemito
make Gas Chromatography (model GC 1000) was used for measure-
ment of residual adsorbate concentration of phenol and resorcinol
mixture (1:1) at fixed conditions, such as fixed oven temperature
(60 ◦C); fixed injector temperature (250 ◦C) and fixed FID detector
temperature (250 ◦C).

2.2.2. Determination of adsorbate concentration
For bi-adsorbate solution i.e., (1:1) mixture of phenol and resor-

cinol, 50 mL of standard solution (20 mg/L) of both phenol and
resorcinol were taken into a conical flask and concentrations of phe-
nol and resorcinol were reduced to 10 mg/L. The bi-solute adsorbate
solution was then placed in a shaking machine for batch kinetic
study keeping speed of the machine at 140 rpm.

Residual concentrations of phenol and resorcinol in 1:1 mix-
ture solution after shaking and filtration were determined in GC
with FID using capillary column. For such detection, no chemical
or reagent was required to be added to filtrate obtained from the
shake mixture of phenol and resorcinol. The filtrate was directly
injected to GC for estimation of the residual sorbate concentra-
tions i.e., phenol and resorcinol against standard Chromatogram of
phenol–resorcinol. Eq. (1) was used to calculate phenol/resorcinol
removal efficiency (PRE) (%).

C − Ce
PRE = 0

C0
× 100 (1)

where C0 is initial concentration of phenol (mg/L) and Ce is concen-
tration of phenol (mg/L) at time t. All the tests were performed in
triplicate.
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Table 3
Range of variables.

Sl. no. Variables Ranges

1 Amount of adsorbent dose (g/L) 10–100
2 Initial concentration of phenol (mg/L) 10–100
0 R.M. Aghav et al. / Journal of Ha

.2.3. Modeling technique

.2.3.1. ANN. ANN simulates the working principle of human brain
nd performs learning and prediction [25]. The architecture of
NN consists of input layer, one or more hidden layers and out-
ut layer. Each layer of the network consists of a number of an

nter-connected processing element called neurons. These neurons
nteract with each other with the help of the weight. Each neuron
s connected to all the neurons in the next layer. The data are pre-
ented to the neural network in the input layer. The output of the
eural network is given by the output layer for the given input data.
he hidden layers enable these networks to compute complicated
elations between inputs and outputs.

The number of hidden layers is to be selected depending on the
omplexity of the problem. Generally one hidden layer is sufficient
or investigation of most of the problems. The number of neurons
n the hidden layer is selected by trial and error method starting
rom minimum and then increased depending on the nature of
roblem. The training of neural network is carried out by present-

ng a series of input data and target output values. The parameters
ffecting output should be selected as input parameters. The back
ropagation training algorithm has been widely used to model var-

ous problems in environmental engineering. In backpropagation
raining algorithm, neurons in the hidden layer and output layer
rocesses its inputs by multiplying each input by its weight, sum-
ing the product, and then processing the sum using a nonlinear

ransfer function, also called activation function. The most common
ransfer function used is sigmoid function. The learning in neural
etwork takes place by modifying weights of the neurons accord-

ng to the error between the values of actual output and target
utput. The changes in weights are proportional to the negative of
he derivative of the error.

The back propagation is essentially a gradient descending
ethod to minimize the network error function (Eq. (2)):

=
k∑

j=1

n∑

i=1

(ei(j) − ti(j)) (2)

here ei(j) and ti(j) are the estimated and targeted value, respec-
ively. ‘n’ is the number of output nodes and ‘k’ is the number of
raining simples.

Before starting the training of ANN, weights are initially ran-
omized. Based on the error propagation, the weights are adjusted
s indicated in Eq. (3)

Wij(n) = ˛
∂E

∂Wij
+ ��Wij(n − 1) (3)

where �Wij (n) and �Wij (n − 1) are weights increment between
odes i and j during adjacent iteration, ˛ and � are learning rate and
omentum factor. Careful selection and appropriate adjustments

f the learning rate are very much necessary for successful training
f back propagation neural network.

The training of ANN model is carried out by presenting the com-
lete input data set to the network and continued till the average
SE is minimized. After the training is over, the trained neural net-
ork deemed to reproduce the target output values for the training
ata. Weights of the trained neurons are then stored in the memory
f neural network. The testing of the trained network is carried out
y presenting the set of test data and then comparing the output of
he network with the actual values of the output. The performance
f formulated ANN model can be measured by several statistical
arameters such as coefficient of determination (R), mean error

ME), MSE, root mean square error (RMSE). A well-trained model
hould have R value close to 1 and values of error terms should be
inimal.
The numbers of input and output neurons are fixed according

o the nature of the problem. In present study, only one hidden
3 Initial concentration of resorcinol (mg/L) 10–100
4 pH 3–9
5 Contact time (h) 0.5–6
6 Phenol/resorcinol removal efficiency (%) 0–100

layer was selected. The number of neurons in the hidden layer was
selected from 2 to 14. The input to the neural network includes
amount of adsorbent dose (g/L), concentration of phenol (mg/L),
concentration of resorcinol (mg/L), pH, and contact time (h). The
percentage removal of phenol and resorcinol was selected as tar-
gets. The range of variables used is given in Table 3.

2.2.4. Data preprocessing
The input and output variables in the present study had different

characteristics and importance level resulting into varied response
to the neural network. The ANN model training would be more effi-
cient if preprocessing steps are performed on the input and target
data, and thus the preprocessing exercise is used in real applica-
tion. The input parameters were scaled in the range of 0.2–0.8. The
preprocessing of the data could be performed by the algorithm as
given in Eq. (4).

Xi(net) = 0.2 + 0.6
(Xim − min(Xi))

max(Xi) − min(Xi)
(4)

where Xi(net) is the normalized value of the ith variable; Xim is the
observed value of the ith variable; min(Xi) is the minimum value
of the ith observed variable in the training data-set; and max(Xi)
is the maximum value of the ith observed variable in the training
data-set.

After preprocessing of the training set-data, new inputs are fed
into the trained networks, and then be processed with the mini-
mum and maximum vectors that are computed for the training set.
In order to compare the results of neural network with the observed
values, the rescaled output needs to be converted back within the
same range for the original target. The algorithm as given in Eq. (5)
was used for this purpose:

Yi(p) = MinYi + (MaxYi − MinYi)
0.6

× (Xi(net) − 0.2)) (5)

where Yi(p) is the predicted value of the ith output variable; Xi(net)
is the normalized value of the ith output variable; MinYi is the min-
imum value of the ith observed variable in the training data-set;
and MaxYi is the maximum value of the ith observed variable in
the training data-set.

Total data generated in the batch experiment was divided for
training (15 data sets), validation (7 data sets) and testing (7 data
sets).

2.2.5. ANN software
The training, validation and testing of the ANN model was car-

ried out using MATLAB 7 software with ANN tool box. A three layer
feed forward neural network with tansig transfer in the hidden
layer and purelin transfer function in the output layer was used.
The Levenberg–Marquardt algorithm was used for the ANN model
training.
2.2.6. Performance of developed ANN model
In order to measure the pollutant removal efficiency and per-

formance of all the three ANN models developed for competitive
adsorption, different types of statistical parameters can be used to
estimate the generalization error. In the present work, ME, MSE
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Table 4
Data-set for Phenol–Resorcinol-AC ANN model training.

Sl. no. Phenol conc.
(mg/L)

Resorcinol
conc. (mg/L)

AC (g/L) Time (h) pH % Phenol removal
efficiency

% Resorcinol
removal efficiency

1 10 10 60 0.5 7 24.3 43.8
2 10 10 60 1.5 7 41.2 61.6
3 10 10 60 2.5 7 51.4 70.3
4 10 10 10 4.0 7 66.8 79.9
5 30 30 30 4.0 7 24.3 40.2
6 80 80 60 4.0 7 43.7 63.4
7 10 10 80 4.0 7 55.8 75.8
8 10 10 60 4.0 7 61.5 79.9
9 10 10 60 4.0 7 71.5 90.1

10 30 30 60 4.0 7 67.2 84.6
11 50 50 60 4.0 7 62.8 80.3

4
4
4
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12 80 80 60
13 10 10 60
14 10 10 60
15 10 10 60

nd RMSE were selected to measure the network performance
f Models ‘A’, ‘B’ and ‘C’. Further in order to investigate the net-
ork response in more details, a linear regression analysis was also

arried out with respect to network predicted values and actual
xperimental values of pollutant removal efficiencies for all the
hree developed models.

. Results and discussion

.1. Binary adsorption kinetics for removal of phenol and
esorcinol

Adsorption of phenol and resorcinol individually in bi-solute
ystems was conducted with initial concentrations of phenol and
esorcinol in the aqueous solutions varying from 10 to 100 mg/L
10, 20, 30, 40, 50, 60, 80, and 100 mg/L) with a 1:1 molar ratio
f phenol and resorcinol mixtures. The phenol and resorcinol
emoval efficiency for AC were found 71 and 90%, respectively,
or initial concentration of phenol and resorcinol as 10 mg/L each
ith contact time of 4 h, pH 7 and adsorbent dose = 60 g/L. Sim-

larly, the removal efficiency for phenol and resorcinol for WC
as found 69 and 85%, respectively. The removal efficiency for
henol and resorcinol for RHA was observed 75 and 87%, respec-

ively. The absorbability of resorcinol was found more than that
f phenol for AC, WC and RHA. The adsorption of adsorbate
epends on compound’s solubility, pH, ionic density and the
resence and position of the hydroxyl group on the aromatic
ing.

able 5
ata-set for Phenol–Resorcinol-WC ANN model training.

Sl. no. Phenol conc.
(mg/L)

Resorcinol
conc. (mg/L)

WC (g/L) Tim

1 10 10 60 0.5
2 10 10 60 1.5
3 10 10 60 2.5
4 10 10 10 4.0
5 30 30 30 4.0
6 80 80 60 4.0
7 10 10 80 4.0
8 10 10 60 4.0
9 10 10 60 4.0

10 30 30 60 4.0
11 50 50 60 4.0
12 80 80 60 4.0
13 10 10 60 4.0
14 10 10 60 4.0
15 10 10 60 4.0
.0 7 61.0 76.9

.0 3 74.8 86.3

.0 7 78.8 87.6

.0 9.2 58.8 67.9

3.2. ANN model developments in competitive adsorption of
phenol and resorcinol

Three models were developed for the competitive adsorption of
phenol and resorcinol for the following combinations:

Model ‘A’: AC and Phenol–Resorcinol System;
Model ‘B’: WC and Phenol–Resorcinol System;
Model ‘C’: RHA and Phenol–Resorcinol System.

Total 29 data sets were available for each adsorption system.
These data were divided into 50% for training set (15), 25% for val-
idation set (7) and 25% for testing data set (7). The training set was
used to develop the neural network. The validation data-set was
used to determine when the network’s general performance was
maximized through early stopping and the testing data set was
used to evaluate the generalization ability of the trained network.
Basheer and Naijar [26] used 36 data sets for training and 5 data
sets for testing, Isha et al. [27] used 19 data sets for training and 5
data sets for testing, Shetty et al. [28] used 24 data sets for train-
ing, 4 data sets for validation and 3 data sets for testing of the ANN
model respectively (see Tables 4–6).

During the training process, small weights were assigned to the
connection between neurons in a random way. The weights were

modified until the error between the predicted and experimental
values of adsorption efficiency are minimized. It is desired that the
difference between the predicted and observed values should be
as small as possible. During the testing process, the network was
tested for its generalization ability with the observed output after

e (h) pH % Phenol removal
efficiency

% Resorcinol
removal efficiency

7 6.8 24.1
7 16.5 43.3
7 25.4 58.8
7 41.5 68.5
7 15.8 21.9
7 28.3 44.2
7 34.5 65.5
7 39.8 70.5
7 68.6 84.6
7 65.9 81.0
7 62.8 75.3
7 57.9 70.0
3 72.5 73.2
7 76.9 86.0
9.2 43.4 61.6
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Table 6
Data-set for Phenol–Resorcinol-RHA ANN model training.

Sl. no. Phenol conc.
(mg/L)

Resorcinol
conc. (mg/L)

Wood charcoal
(g/L)

Time (h) pH % Phenol removal
efficiency

% Resorcinol
removal efficiency

1 10 10 60 0.5 7 13.8 38.4
2 10 10 60 1.5 7 28.7 54.2
3 10 10 60 2.5 7 41.0 63.3
4 10 10 10 4.0 7 56.8 76.5
5 30 30 30 4.0 7 11.4 31.5
6 80 80 60 4.0 7 28.7 54.3
7 10 10 80 4.0 7 44.2 68.9
8 10 10 60 4.0 7 51.5 73.5
9 10 10 60 4.0 7 74.9 86.8

10 30 30 60 4.0 7 70.5 83.5
11 50 50 60 4.0 7 68.6 77.1
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The adsorptions of phenol and resorcinol (1:1 mix) onto AC, WC
and RHA were studied as a function of contact time in order to deter-
mine the time required to reach the equilibrium. The efficiency of an
adsorbent depends on the rapid uptake and quick establishment of
12 80 80 60
13 10 10 60
14 10 10 60
15 10 10 60

he training process is completed. When the neural networks are
ested successfully, it can be used for prediction. The neural net-
orks are sensitive to the number of neurons in the hidden layers.

nsufficient neurons may cause under fitting. Also, too many neu-
ons might lead to over fitting. When such network is presented
ith a new data set, the network would likely to give incorrect out-
ut since the new data might exhibit random noise different from
andom noise of the developmental data-set. The over fitting prob-
em can be prevented with generalization improving techniques,
uch as regularization or early stopping. Another problem in neural
etwork training is the selection of the most appropriate learning
ate. A too large learning rate might result in unstable learning,
hile a too small learning rate could also lead to long training time.

or the training of nonlinear multilayer ANN, a learning rate of 1.0
ormally can produce good result.

The feed forward backpropagation (BP) algorithm with
evenberg–Marquardt (LM) training was applied for development
f all three ANN models. The BP is an approximate steepest descent
lgorithm with MSE used as performance function. In the neural
etwork development, different number of hidden layers, number
f neurons in each layer, and type of transfer function for each neu-
on were analyzed with a learning rate of 1.0 and training goal of
0−5. Then, the trained networks were tested using the testing data
ets and MSE method by modifying the network weights. It was
ound that network with one hidden layer of neurons is success-
ul. It was observed that Models ‘A’, ‘B’ and ‘C’ took 12, 25 and 30
pochs, respectively, to train the 15 data sets. The tansig transfer
unction was used in the hidden layer and linear transfer function in
he output layer. The training of the network was carried out with
ifferent number of neurons in the hidden layer with training goal
f 10−5. It was observed that the best network for all the models
as 8 neurons in the hidden layer.

The LM training algorithm used was one of the fast training BP
ethods i.e., Levenberg–Marquardt algorithms. The LM algorithm

s designed to approach second-order training speed without com-
uting the Hessian matrix. This algorithm uses the approximation
o the Hessian matrix as given in Eq. (6).

k+1 = XK − [JT + �I]
−1

JT e (6)

The LM algorithm is appeared to be the fastest method for train-
ng moderate-sized feed forward neural networks (up to several
undred weights). It has better performance than the other meth-

ds for function approximation problems. The training of the ANN
odels formulated is shown in Figs. 1–3. The comparison of the
NN model’s results and experimental values of phenol/resorcinol
emoval efficiencies for all the three models formulated is pre-
ented in Tables 7–9. The statistical analysis of the results of the
4.0 7 65.0 74.5
4.0 3 53.5 69.2
4.0 7 75.9 84.6
4.0 9.2 23.3 63.9

network performance is presented in Table 10. The performance of
the three models developed is shown in Figs. 4–6.

The results of the linear regression analysis for the three models
developed are shown in Figs. 7–9. The values of R for all the three
models are closer to 1. The values of slope (M) for all the three
models are closer to 1. Also, the values of Y-intercept for all the three
models are closer to 1. The values of ME, MSE and RMSE of these
three models are on lower side. It was found that the predicted
values of phenol and resorcinol removal efficiency by ANN model
are very close to the experimental values for all data sets in test
series for Models A, B and C.

3.3. Effect of contact time, adsorbent dose, pH and initial
concentration of phenol and resorcinol on competitive adsorption
Fig. 1. ANN model training for prediction of phenol and resorcinol removal effi-
ciency.
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Table 7
Comparison of ANN Model ‘A’ output and experimental values for test data.

Sl. no. Phenol removal efficiency (%) Resorcinol removal efficiency (%) Error (%)

Experimental values ANN predicted values Experimental values ANN predicted values Phenol Resorcinol

1 34.6 32.8 54.2 52.5 1.8 1.7
2 57.5 57.2 73.9 74.1 0.3 −0.2
3 34.5 29.9 57.1 46.8 4.6 10.3
4 59.8 63.0 77.6 80.3 −3.2 −2.7
5 68.4 70.7 90.0 85.8 −2.3 4.2
6 60.8 61.1 77.4 77.8 −0.3 −0.4
7 73.1 74.6 83.2 86.3 −1.5 −3.1

Table 8
Comparison of ANN Model ‘B’ output and experimental values for test data.

Sl. no. Phenol removal efficiency (%) Resorcinol removal efficiency (%) Error (%)

Experimental values ANN predicted values Experimental values ANN predicted values Phenol Resorcinol

1 11.6 11.7 36.4 33.9 −0.1 2.5
2 30.8 34.0 63.1 66.2 −3.2 −3.1
3 23.4 22.5 37.5 33.8 0.9 3.7
4 36.6 38.7 67.9 73.4 −2.1 −5.5
5 67.2 67.2 82.6 82.6 0 0
6 60.9 60.9 74.0 73.6 0 0.4
7 65.9 72.0 69.4 77.0 −6.1 −7.6

Fig. 2. ANN Model ‘B’ training for prediction of phenol and resorcinol removal effi-
ciency.

Fig. 3. ANN Model ‘C’ training for prediction of phenol and resorcinol removal effi-
ciency.
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Fig. 4. Simulation results for Model ‘A’.
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Table 9
Comparison of ANN Model ‘C’ output and experimental values for test data.

Sl. no. Phenol removal efficiency (%) Resorcinol removal efficiency (%) Error (%)

Experimental
values

ANN predicted
values

Experimental
values

ANN predicted
values

Phenol Resorcinol

1 21.0 22.4 47.4 46.4 −1.4 1.0
2 45.4 48.3 67.4 69.7 −2.9 −2.3
3 21.0 21.1 45.7 45.1 −0.1 0.6
4 48.8 59.7 70.1 77 −10.9 −6.9
5 71.0 70.0 85.7 84.0 1.0 1.7
6 67.7 67.5 75.5 75.9 0.2 −0.4
7 72.7 58.5 72.8 74.6 14.2 −1.8

Table 10
Comparison of performance statistics of neural network models.

Pollutant removal efficiency model ME MSE RMSE Coefficient of
determination

Slope Y-axis intercept

Model ‘A’ Phenol 0.08 6.0 2.4 0.96 0.98 0.01
Resorcinol 1.4 20.5 4.5 0.95 1.0 0.00

Model ‘B’ Phenol 1.5 7.5 2.7 0.93 0.89 0.06
Resorcinol 1.3 16.2 4.0 0.97 0.98 0.01

Model ‘C’ Phenol 0.01 47.4 6.8 0.95 0.90 0.05
Resorcinol −1.1 8.6 2.9 0.96 0.98 0.01
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bent dose while loading capacity (amount of phenol and resorcinol
loaded per unit weight of adsorbent) gradually decreased for the
Data Set

Fig. 5. Simulatio

quilibrium time. Initially, a large number of vacant sites are avail-
ble for adsorption for which the rate of adsorption is very fast
hat increases the amount of phenol and resorcinol adsorbed on
he surface of carbon within the first stage of 4 h of adsorption.
n this study, marginal decrease in phenol removal was observed

here as the resorcinol removal enhanced slightly. The percentage

emoval of phenol for AC, WC and RHA was found as 67, 44 and
0%, respectively. The percentage removal of resorcinol for AC, WC
nd RHA was found 82, 72 and 79%, respectively.
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Fig. 6. Simulation resu
lts for Model ‘B’.

The adsorption of phenol and resorcinol on AC, WC and RHA
were also carried out at different adsorbent dose (10–100 g/L) by
keeping other parameters constant. The percentage removal of
phenol and resorcinol increased with an increase in the adsor-
7

Experimental Values of Phenol
Removal Efficiency

ANN Predicted Values of
Phenol Removal Efficiency

Experimental Values of
Resorcinol Removal Efficiency

ANN Predicted Values of
Resorcinol Removal Efficiency

lts for Model ‘C’.

same. The increase in loading capacity is due to the availability
of higher number of solutes (phenol/resorcinol) per unit mass of
adsorbent. These experiments were carried out with initial con-
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Fig. 7. Regression analysis for AC and Phenol–Resorcinol

entrations of phenol and resorcinol, 10 mg/L of solutes and neutral
H of the solution. It has been found that phenol/resorcinol bind-

ng with adsorbent increases more rapidly in the initial stages and
fter some point, the adsorption is marginal which becomes almost
onstant.

The pH of adsorption medium is one of the most important
actors affecting the adsorption process. Effect of initial pH on
dsorption of phenol and resorcinol was studied with an initial con-
entration of 10 mg/L and optimum dose of 60 g/L. In the alkaline
ange, the pH was varied using 1 N NaOH, whereas in the acidic
ange, pH was varied using 1 N HCl. The experiments for the uptake

f phenol and resorcinol on AC, WC and RHA were carried out in
he pH range of 3, 4, 7, 8 and 9.2. It has been found that the rel-
tive amount of phenol and resorcinol adsorbed was significantly
ffected by pH. The maximum adsorption of phenol and resorci-
ol occurs at neutral pH. Significant decline in removal efficiency
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m. (Note: A = simulated values, T = experimental values.)

of phenol and resorcinol was observed for further increase in pH,
which may be due to formation of phenolate anions.

The phenol and resorcinol removal percentage was found to
decrease with increase in initial concentration of phenol and resor-
cinol from 10 mg/L to 100 mg/L at same equilibrium condition.
The amount of phenol and resorcinol adsorbed per unit AC mass
increases with the increase in initial phenol and resorcinol con-
centration due to the decrease of uptake resistance of solute
from solution of phenol and resorcinol. At initial concentration of
10 mg/L for phenol and resorcinol, the percentage phenol uptake
for AC, WC and RHA was found as 71, 69 and 75%, respectively, and

resorcinol uptake by AC, WC and RHA was found as 90, 85 and 87%,
respectively. At the maximum initial concentration of 100 mg/L,
the percentage uptake of phenol adsorbed by AC, WC and RHA was
found as 60, 55, and 62% and resorcinol adsorbed by AC, WC and
RHA was found as 73, 67 and 70%, respectively.
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Fig. 9. Regression analysis for RHA and Phenol–Resorcino

. Conclusion

Batch study results showed that the equilibrium time was
chieved after a contact period of 4.0 h at a buffer pH of 7 corre-
ponding to initial phenol and resorcinol concentrations of 10 mg/L
ach. At equilibrium time, phenol and resorcinol removal effi-
iencies were found to be 79 and 88%, respectively, for AC. In
ase of WC under identical conditions, removal efficiencies were
bserved as 77 and 86% while for RHA, it was 76 and 85%. The above
esults exhibited initial concentrations of 10 mg/L of both phenol
nd resorcinol in solution. The differences in adsorbing capacity of
arious adsorbents were very marginal (within 5%). Hence, RHA
an be used as a low cost carbonaceous adsorbing material for
emoval of phenol–resorcinol from bi-solute water environment
p to a concentration of 10 mg/L. The experimental data derived
rom batch kinetic studies was subsequently utilized in prediction
f pollutant removal efficiencies for competitive adsorption of phe-
ol and resorcinol in the water environment as a bi-solute pollutant
sing ANN technique. With the experimental data of batch adsorp-
ion study of phenol and resorcinol mix (1:1) using AC, WC and
HA, three feed-forward networks with a backpropagation learn-

ng algorithm were developed to facilitate the modeling approach.
ased on experimental results, the error of ANN model output
Tables 7–9) was well within 10%. Table 10 also demonstrated
hat the co-efficient of determination (R) above 0.95 and slope (m)
pproaching 1 with Y intercept value closer to zero. The three ANN
odels were successfully trained and tested which could forecast

ollutant removal efficiency in bi-solute mix of phenol and resor-
inol reasonably. The study also indicated that the ANN technique
as a great potential in prediction of pollutant removal efficiency

n competitive adsorption process.
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